Echolocating bats can use acoustic landmarks for spatial orientation.

نویسندگان

  • Marianne Egebjerg Jensen
  • Cynthia F Moss
  • Annemarie Surlykke
چکیده

We investigated the echolocating bat's use of an acoustic landmark for orientation in a complex environment with no visual information. Three bats of the species Eptesicus fuscus were trained to fly through a hole in a mist net to receive a food reward on the other side. In all experiments, the vocal behavior of the bats was recorded simultaneously using a high-speed video recording system, allowing for a 3D reconstruction of the flight path. We ran three types of experiments, with different spatial relations between the landmark and net hole. In the first experiment, the bat's behavior was studied in test trials with the landmark placed 10 cm to the left of the net opening; between test trials, the positions of the net opening and landmark were moved, but the spatial relationship between the two remained fixed. With the landmark adjacent to the net opening, the bats quickly found the hole. In the second experiment, bats were tested in control trials in which the landmark was moved independently of the hole, breaking the established spatial relationship between the two. In control trials the bats repeatedly crashed into the net next to the landmark, and inspected the area around it. In the final experiment, the landmark was removed altogether from the set-up. Here the bats spent more time per trial searching for the net opening with an increased number of inspections as well as crashes into the net. However, over the course of a test day without the landmark, bats reduced the time spent per trial and focused inspections and crashes around the hole. The behavioral data show for the first time that the echolocating bat can learn to rely on an acoustic landmark to guide spatial orientation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From spatial orientation to food acquisition in echolocating bats

Field research on echolocation behavior in bats has emphasized studies of food acquisition, and the adaptive value of sonar signal design as been considered largely in the context of foraging. However, echolocation tasks related to spatial orientation also differ among bats and are relevant to understanding signal structure. Here, we argue that the evolution of echolocation in bats is character...

متن کامل

Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming.

Although it has been recognized that echolocating bats may experience jamming from the signals of conspecifics, research on this problem has focused exclusively on time-frequency adjustments in the emitted signals to minimize interference. Here, we report a surprising new strategy used by bats to avoid interference, namely silence. In a quantitative study of flight and vocal behavior of the big...

متن کامل

The echolocaTing BaT as a Model for scene analysis diversiTy of echolocaTing BaTs

a direct impact on the information available to its acoustic imaging system. In turn, the bat’s perception of the echo scene guides its adjustments of the features of subsequent sonar vocalizations. Therefore, the bat’s adaptive sonar behavior can shed light on the fundamental processes that underlie auditory scene analysis by echolocation. Indeed, the bat’s active sonar behavior allows us to l...

متن کامل

Probing the Natural Scene by Echolocation in Bats

Bats echolocating in the natural environment face the formidable task of sorting signals from multiple auditory objects, echoes from obstacles, prey, and the calls of conspecifics. Successful orientation in a complex environment depends on auditory information processing, along with adaptive vocal-motor behaviors and flight path control, which draw upon 3-D spatial perception, attention, and me...

متن کامل

Sensorimotor Model of Obstacle Avoidance in Echolocating Bats

Bat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified. However, while a number of possible cues have been suggested, little is known...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2005